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The incidence of the numerical resolution and the blockage effect are investigated in an embedding method
for solving bidimensional bluff body flows. This method consists of using an artificial boundary instead of
imposing exact conditions on the body surface. It requires us to define a blur frontier ratio and a blockage
effect ratio. The blockage effect ratio is found using the mean flow of a circular cylinder directly. The blur
frontier ratio is obtained by comparison of the present method with another numerical method where explicit
boundary conditions on the body are imposed. For this ratio, the investigations are based on the flow past a
square cylinder which discard the uncertainty on the surface of the body for the embedding method. Hence, the
two factors allow the transformations of the Strouhal and the Reynolds numbers for the flow past a circular
cylinder. The universal Strouhal-Reynolds number relationship of the circular cylinder is finally recovered.
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I. INTRODUCTION velocity U in the vicinity of the cylinder is the relevant value
to quote the mechanisms of the dynamics of the wake. In
The global dynamics of the flow past a circular cylinder isconsequence, the confinement effects need to be taken into
usually inferred through the following numbers: Reynoldsaccount to accurately describe the actual flow observed in the
Re=Ud/v, Strouhal Stfd/U, and Roshko ReRexSt numerical simulations. In addition, the embedding method
=fd?/v. They are based on the mean velocity at the cylindeapproximates complex geometries of bluff-bodies using arti-
U, its effective diameted, the frequency of the vortex shed- ficial frontiers[3]. It consequently creates a blur region at the
ding f, the kinematic viscosity, and the density of the  cylinder's surface imposed by the mask function. Because a
fluid. A laminar vortex shedding regime is known to occur Cartesian grid is employed, the shape of a cylinder would
for the Reynolds number range extending approximatehpl@ve been perfectly rendered only for an infinite spatial reso-
from 50 to 180(see, e.g., Ref.1]). Although the nominally Igtlon (Qr for a rectan_gular-_shaped cylingeHence, in all
parallel (bidimensional shedding can be affected by three- simulations an ef_fecnve d|ameter_ needs to be evaluated.
dimensional phenomena giving rise to oblique vortices, thera._hese two corrections on the confinement anq the blur fron-
is now an agreement for the existence of a universal/€" are reql_ured to compare accurately datg issued from the
Strouhal-Reynolds number curve for the circular cylinder.numenc"’lI simulations and those from experiments.
The relationship is universal in the sense that the experimen-
tal and numerical data of the laminar vortex shedding col-
lapse (within 1%) onto a single continuous curve for the
parallel shedding as well as for oblique vortices when a geo- The embedding method treats the two-dimensional hydro-
metric transformation is appli€@]. This makes the circular dynamics equations within a velocity-pressure formulation in
cylinder wake very suitable as a test flow for exploring vari-their Eulerian form and on a regular Cartesian 8¢l The
ous numerical methods such as the embedding method colengthsX andY extend, respectively, in the longitudinal and
sidered here. Details on the numerical treatment with such @ransversal directions of the velocity componentand v .
method are given in Ref3]. In summary, calculations are The temporal discretization is a forward differencifiyst-
effected on a Cartesian grid even for a circular, or moreorder accuracdyinvolving three fractional steps in the time
complex, geometry that thus allows the use of standard nuntegration. The first step performs the integration of the ad-
merical routines. Moreover, the temporal discretization leadgection and the diffusion terms in an explicit scheme. In the
to a mainly explicit numerical scherrexcept for the treat- second step, a body force term is imposed in the momentum
ment of the pressure contributiprtherefore it is simple to  equation for the cells that are partially or fully occupied by
implement. the cylinder(using a mask function the velocity field is
The input constant parameters in the numerical simulamodified so as to make it vanish in the cylinder. The third
tions are the inlet velocity.. and the diameter of the cylin- fractional step is the integration of the Poisson equation for
derd., hence the Reynolds number Ris varied through pressure associated with the pressure gradient part of the
the parametep. However, in real life experiments, the mean momentum equation. The spatial discretization is based on
central differencingsecond-order accuracyn a staggered
grid for all the variables. In contrast to most numerical stud-
* Author to whom correspondence should be addressed. Electronies, boundary conditions on the cylinder are not set directly;
address: lionel.schouveiler@irphe.univ-mrs.fr rather they are satisfied implicitly at the second fractional

II. SIMULATION DETAILS
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step. Concerning the velocity, the conditions on the lateral 0 A A i W o
boundaries Y=0 andy=Y) are impermeability and free A T
slip, the latter in order to avoid the formation of boundary
layers on the lateral boundaries. At the outfloxe=(X), the
homogeneous Neumann conditions are applied in the longi-
tudinal directions and uniform profile at the inflow=0).
For the pressure, zero is imposed at the outlet, homogeneous
Neumann conditions are applied at the inlet in the longitudi-
nal direction and at the lateral walls in the transverse direc-
tion. The numerical parameters are deduced from the number
of points needed to represent the dimensionless ratlil®
and the dimensionless tinte,/2U ... They are, respectively,
refered to as the grid spacifigand the time step; for the
lower resolutionh=0.2 which implies 10 nodes for the di-
ameterd,, as shown in Fig. 1. The data used further are
produced ath=0.2, h=0.1 with 7=0.025 concerning the END
flow past a square cylinder and bt=0.2, h=0.1 with 7
=0.01 concerning the flow past a circular cylinder. The criti- ) ) _
cal Reynolds numbers of vortex shedding for the various FIG. 1. Perimeters associated to diametets-), d.. (——) and
numerical experiments are obtained by decreasing the Rey@nsition region between body and fluighaded cellson the
nolds number from Re=55 (where the flow is time- stagered grid cell centered on the dashed grid, cyll_nd_e_r cénrter
dependentto different lower values and checking whether O™ the x components(©) andy components(L) limiting the
the wake oscillation is sustained. For the square cylindei'”’ms't'on region are represented.
flow, we obtain 44.75'Re,<45 and 42.5XRe.<43, tered on the cross, it is surrounded by an artificial solid/fluid
whereas for the circular cylinder we obtain 58Be.  transition(shaded in gray The nodes where the velocity is
<50.75 and 4% Re,<47.5, provided the respective numeri- |et to zero for each time step consist of an artificial cylinder.
cal parameters. It is located inside the transition region with the limiting
nodes refered by roun@ componentsand squarey com-
. RESULTS ponent$ black symbols that form an approximate circular
cylinder. Similarly, the nodes associated to unchanged veloc-
High resolution and large computational grid are generity surround the transition region and form a perimeter that
aIIy adopted in simulations in order to meet ideal ConditionSCan be distinguished by the round and the square white sym-
of the flow diSCfetization, which are Computational time CON-hols. The effective diameter is expected to be in the range
suming. In this method, defining the actual size of the bodyetween the two limiting artificial diameters associated to
and its distance from the lateral walls consist of the mainhese two perimeters.
corrections to apply to the data and optimize the accuracy |t naturally follows that when the spatial resolution is in-
and the computational load. creased dramatically, the core cylinder of zero velocity and
The corrections on the diameter and the velocity are takefhe outer cylinder become true circles. They impinge the
into account via the correction factors: the blur frontier ratiocylinder surface in a tiny region such that the cylinder can be
p=d/d., and the blockage ratia=U/U... According to the  assumed as circular. For the lower resolutibr=0.2), Fig.

definitions of the dimensionless parameters, they imply the shows that the effective perimeter associated lies ap-
following transformations between the experimental and thgyroximately in the range 0.736.<d<1.257d... In other
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numerical dimensionless numbers: words, the effective diameter may be over or under esti-
mated, and the inner and outer shapes differ from circles.
Re=apBRe,, Ro=aBRo,, St=St.. (1) In order to determine the factg@, the numerical simula-

tions are turned to the flow past a square cylinder which are
The first one is a consequence of uncertainty of the surperformed at various spatial resolutions. For the embedding
face of the bluff body, inherent to the artificial boundariesmethod, this particular geometry discards any uncertainty on
methods, and the second is related to the well-known blockthe body shape. The inner cylinder of zero velocity and the
age effect. outer cylinder are both true squares without approximation.
Effective diameterThe sketch in Fig. 1 shows the nodes Still there is an uncertainty on the size of the effective length
of the velocity components set on the staggered grid centeraflwhich is evaluated using in the following. It is estimated
on the dashed lines grid where lengths are scaled on the grigs lying into the same range as for the circular cylinder case
spacing of the lower resolutiorh&0.2). The longitudinal  presented in Fig. 1. The Re-St relationship from the embed-
components are set on the right side of each @elind ding method is compared to the relationship deduced from
symbolg and the transversal components at the (®guare the data provided by Sohanker al.[6]. They performed in
symbolg, only the relevant nodes are represented in the figparticular two-dimensional numerical experiments of the
ure. The perimeter of the cylinder that corresponds to thélow past a square cylinder at zero incidence, that is when the
diameterd,. is assumed to follow the solid line and is cen- side that faces the incoming flow is perpendicular to it. The
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method used by these authors is an incompressibieLEC

code on a nonstaggered grid arrangement. A third-order
Quick scheme is used for the convective terms and an im- 12
plicit time discretization with second order Crank-Nicholson
scheme is employed. The Strouhal and Reynolds numbery gl
are equally defined in both studies, the boundary conditions
and the size of the grids are similar and in particular the
blockage effect is the same witt=20d.,. The time step is
0.025 and, for the study from Sohanker al, the spatial
domain is mapped to get a grid spacing of 0.5 far from the Y 17 255
body and of 0.004 at the body. Conversely, there is no map- x

ping in the embedding method, that is the grid spacing is the
same in all the spatial domain. We choose the resolutions
=0.2 andh=0.1 that are intermediate to this of Sohankar
etal. It follows that the equivalence of the data obtainedciated to the calculated value @f for h=0.2. Hence, we
from the two alternate methods is ensured except for tw@bserve that the diameter. underestimates the diameter of
points. The spatial resolutions differ in their principle of the cylinder.

implementation, especially near the body, and the effective B|Ockage effect Free S||p boundary conditions are im-
size of the body is fully determined in the study from Sohan-posed on lateral walls for the sake of conserving the condi-
kar etal. whereas it is approximate in the embeddingtion of parallel and uniform flow present at the inlet. This
method. This latter feature allows to determine the eﬁectiVQrieS to reproduce an experimental setup with far away walls
diameter throughB=d/d.., assuming no other relevant dif- to allow a constant velocity profile everywhere reasonably
ference between the two methods. Hence, any differencer from the body. Nevertheless, the condition of the conser-
observed in the Re-St relationships would appear for differyation of the flow rate involves an increase of the longitudi-
ent spatial resolutions in the embedding method, affectingal velocity in the region near the cylinder. The effect is

FIG. 2. Longitudinal velocity fieldVx of mean flow for Re
=55 for the circular cylinder.

the blur region and leading to the factgr ~ shown in Fig. 2 for the spatial domain with si2e=17d..
The fit of the Reynolds-Strouhal numbers values providechind Y=8d., (here presented in units of the cylinder radius
by Sohankaet al.is written d../2) for the mean longitudinal flow field over one period of

the stationary vortex shedding. The flow accelerates strongly
Bss in the cylinder region between the two walls. The longitudi-
@JFC%RG% 2) nal velocity profiles in Fig. 3 show the increase in the

direction near the walls with approximately zero derivative

with A,=0.187823, B,.~63.8306, andC..~ —8.243243 in the y direction. _Notice that the velocity is zero vyith a
X 107 for Re,={55,60,100,150,200 The functional form length corresponding _to the dlam(_ate_r for the profllg that
(2) used for the SRe) fit results from Landau-type models P3SS€S through the cylinder centsolid Im_e) at the_ Iocat_lon
commonly used to describe the dynamics of the sheddin =Xo. The velocity us_ed as_reference n the_ d|menS|0nIgss
modes(see, e.g., Ref4]). A similar form was also deduced umbers is taken on_thls profllt_a in most experimental studies.
by Rayleigh[5] from a series expansion of the shedding '€ blockage ratio correction=U/U.. refers toU at
frequency in terms of R considered as a small parameter. the walls for th(_e profile at th(_g locationx=X,. The effec-
The introduction of the ratig8 on values of Strouhal and Ve Velocity U is deduced directly from the values dfx

Reynolds numbers obtained from the embedding metho n the walls as presented in Fig. 3. This figure suggests that
leads to the following formula: the velocity in thex direction remains unchanged in tlye

direction, here we deduce=1.1353 @=0.2, 7=0.01) and
B a=1.1333 h=0.1, 7=0.01). Notice the weak difference be-
St.=Act iﬂLBCSSRQO ) (3)  tween these two ratios although the spatial resolutions are of
BRe, factor 2, similar remark applies when other temporal resolu-
tions are used.

The ratio 8 is determined by nonlinear curve fitting for  Correction of the Re-St relationshifigure 4 shows the
Re,={55,60,65,70,75,80,85,1pGand subsequent values of five values for the flow past a square cylinder from Sohankar
St. obtained for the two spatial resolutions. These specifiet al. [+: data, ——: formula (2)] and data from Owelf7]
values of Reynolds numbers are chosen where the timg=x). Owen performed an experimental study and the related
dependent wake is laminar in a range where the mean vortefata show the occurrence of 3D effects near=R@0 as a
shedding flow is laminar. For the time step=0.025, we  discontinuity. The proximity of the two sets validates that the
obtain 8=1.2032 whenh=0.2 and 8=1.1701 whenh  square cylinder is equally well reproduced in these two stud-
=0.1. Transposed to the case of the circular cylinder, thées. Concerning the embedding method, the data directly ex-
uncertainty on the blur region remains the same because it t)acted from the numerical simulations correspond hto
not based on the shape of the body but on the grid spacing; 0.2 (), h=0.1 (¢) for 7=0.025. The value of3 at the
hence for each grid the corresponding valuepois used. respective numerical resolutions is determined such that the
Figure 1 shows the effective perimeter in dashed line assadata associated to the two studies match, according to Eg.

Stis=Agst
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FIG. 3. Longitudinal velocity profiles of mean flow for Re
=55 and transverse length in units of the cylinder’s radius. The FIG. 4. Strouhal number as function of the Reynolds number.

profiles are consecutive witix between 1 and 1.2 whenre=16 Square cylinder: Sohankat al. data: +, fitted curve:——; Owen:
and are located at the longitudinal distances from the center of th&; embedding method =0.025), raw datah=0.2: [0 and h
cylinder —3d, —d (dashed, 0 (solid), andd/2 andd (dotted. =0.1: ¢. Circular cylinder: universal curve from Williamsd2],

—; Embedding method#=0.01) h=0.2: O,®; andh=0.1: A,A

(3). Concerning the flow past a circular cylinder, the univer-(raw data:O, A and corrected value®,A).
sal curve giyen by Williamsoip2] (solid line) is_above the a and the blur region ratig8. The first one is deduced di-
curves obtained for the cases of a square cylinder. rectly from the generated data. The second one is obtained

The data obtained from the embedding method7at py comparison of the present numerical simulations with a
=0.01,h=0.2, andh=0.1 when no correction is applied reference study from Sohankat al. concerning the flow
(O,A) lie in the upper left corner. When transformed via thepast a square cylinder. Combining these two investigations,
equations in Eq(1) using the appropriate factors associatedihe dimensionless Strouhal and Reynolds numbers are de-
to the specific resolutions, the value®,A) meet the curve  qyced from the transformations where both factors are used
from Williamson. Provided that the agreement between alhccording to appropriate numerical resolutions. Agreement
experimental results reported in literature agree into a 2%f the resulting data with those from Williamson points out
margin about this universal curve, the final values obtaineghat the approximate size of the body is a key feature of the
by the Embedding Method lie into the expected limits. embedding method. It is the origin of the bias observed be-
tween Re-St relationships issued from this method and any
other study. Hence, this bias can be resolved supported by
arguments presented in this study. Furthermore, although

This study shows that the universal Re-St curve from Wil-these results are relevant for a two-dimensional geometry,
liamson[2] has been recovered with accuracy regardless tguch effects exist for applications and real cases as well. In
the numerical resolution of the embedding method. It isconsequence, a similar methodology can be used to treat
based on the independent determination of the blockage ratigeneral three-dimensional flows.

IV. CONCLUSIONS
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